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INTRODUCTION 

 
The towers of transmission lines  are grounded throughout their footing electrodes that are mutually  connected 
through a ground wire(s). Because of that, during the ground fault one part of a fault current is dissipated into the 
earth trough the faulted tower, ground wire(s) and many others towers. At this the potential that appears at the 
fault place (faulted tower) can by significant (several kV). The algorithm for ground fault distance relay 
developed in the previously published paper completely ignores this fact (e.g. [1]). The first attempt of taking 
into account the grounding impedance at fault place is undertaken in [2]. However, the algorithm developed in 
this papers corresponds only to the situation without the ground fault current component coming from the 
opposite line end. Because of that applicability of this algorithm is limited on a relatively small number of 
practical cases. In this regard algorithm presented in this paper represents significant enlargement of the 
applicability scope of the algorithms taking into account the grounding impedance at the fault place.           
This paper is a logical continuation of the former publications [3,4] and belongs to the methods that calculate the 
distance to the fault place by using fundamental frequency voltage and current from one terminal of the 
transmission line. The proposed algorithm is focused on a single phase-to-ground fault, a type of fault that 
occupies about 90% of all of the transmission line faults (e.g. [4]). Finally, the proposed algorithm significantly 
compensates the deficiency of the data on the relevant factors – the fault impedance and the fault current coming 
from the opposite line end. This is done by analyzing the ground fault current return paths and by using the fact 
that the ratio between the real and the imaginary part of the fault impedance varies along the whole line length in 
a very narrow range of values. As a result of this it is obtained the algorithm of better accuracy in comparing 
with earlier known [1,3]. This quality enables us for  zone-1 setting of distance releys without coursing 
coordination problems characteristic for relatively short transmission lines, as they are lines in high voltage 
distribution networks. 
 
  
BASIC PROBLEM 
 
Let us assume that we have two parts of a power system with directly grounded neutral points and connected by 
a single circuit line. For a single phase-to-ground fault occurring anywhere along the line, the electrical circuits 
established during the fault may be schematically presented as in Fig. 1. 
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Fig. 1. Faulted power system 
 
On the basis of the quantities measurable on the left line terminal (voltage Ua and current Ia) it is necessary  to 
find out the distance to the fault point (d). If we assume for a moment that the fault impedance Zf is negligible, 
the line impedance to the fault point dZ will be very easy to determine. As this impedance is proportional to the 
distance d, the determination of the fault position will be also easy. However, under practical conditions the fault 
impedance is not negligible and represents a very complex function of the distance to the fault location [3,4]. As 
a consequence of this fact, at the fault place a potential Vf  appears with a value proportional to the total fault 
current (I’a+ Ib) for a certain value of the impedance Zf. Since the fault current from the opposite end of the line 
Ib contributes to the creation of this potential, the microprocessor-based relay DR sees an apparent impedance 
that is somewhat larger than the real impedance (dZ+Zf). This increase introduces a deviation in the measurement 
data (Ua and Ia) that we will use for the fault distance determination. The deviation is more pronounced when the 
relative share of the current Ib in the total fault current is larger. 
The pre-fault (load) current Ip has a similar influence on the measured quantities. This current is not separately 
presented in the given circuit, but it is clear that this current represents the difference between the current 
through the faulted phase conductor, Ia, and the current through the fault place I'a. 
The above discussion can be summarized into the following. For a more accurate detection of the fault location it 
is necessary to eliminate the influence of the unknown (not available by measurement) quantities on the data 
obtained by measurement. This certainly means that our investigation should be focused on the unknown but 
relevant factors. In the circuit shown in Fig. 1 the fault impedance Zf represents only one part of the loop 
impedance measured at the relay location, or in the local station. However, in practice this is an equivalent 
impedance of a very complex and spontaneously formed electrical circuit. Because of that, it is certain that more 
information about the fault impedance can be obtained only through a detailed investigation of this circuit. 
During a ground fault a transmission line represents a very complex electrical circuit with a large number of 
conductively and inductively coupled elements. Towers of transmission lines are grounded through the footing 
electrodes and mutually connected by a ground wire(s). At the place of the faulted tower the ground fault current 
leaves the phase conductor. Its flow to the feeding sources continues through many different paths. Due to 
inductive coupling between the phase conductors and the ground wire(s), a part of this current circulates 
exclusively through metal paths (in the line, through the ground wire(s) and in the station, through the grounding 
connections.) The remaining part of the fault current returns conductively to the power system, through the earth 
via ground wire(s), through a large number of towers and through the grounding systems of all substations with 
grounded neutral point(s). 
 
 
APPARENT IMPEDANCE FOR THE RETURN PATHS OF GROUND-FAULT CURRENT 
 
We will start our consideration by assuming that the substations at the line terminals are the only substations 
with grounded neutral point(s) in the whole power system. This means that the total ground fault current If 
returns to the power system only through the grounded neutral point(s) of these substations (A and B in Fig. 2). 
The real physical model of the transmission line under the conditions of a ground fault at an arbitrary tower is 
schematically presented in Fig. 2. 
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Fig. 2. Three-phase transmission line with a ground fault 
 



The notation used in this circuit has the following meaning: 
 
Ia(Ib) – part of the current If flowing left (right) from the fault place, 
Za(Zb) – impedance of the grounding system of the substation A (B) which does not include the grounding 

effects of the ground wire(s) of the line under consideration, 
Zs –  self impedance of the ground wire(s), per span, 
Zm –  mutual impedance between the ground wire(s) and the faulted phase conductor, per span, 
R –  average tower footing resistance, 
n –  number of spans to the fault location, counted from the substation A, 
N –  overall number of spans, 
G –  remote ground. 
 
By forming the presented transmission line model, the following approximations and idealizations of the real 
physical model were used: 

- phase and ground wire(s) impedances and their mutual impedances are identical to the values calculated 
on the basis of infinite transmission lines, 

- towers footing resistances are mutually equal and any mutual interference to their own ground current is 
neglected, 

- impedances of the ground wire(s) between the two towers are mutually equal. 
The impedances Zs and Zm can be either calculated by using formulae based on Carson’s theory of the ground 
fault current return path (e.g. [6]) or measured. 
In order to simplify the problem we will consider only the elements representing the ground fault current return 
paths, as shown in Fig. 3. 
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Fig. 3. Return paths of ground fault current 
 
In this circuit the influence of the inductive coupling between the ground wire and the phase conductors is 
separately presented (e.g. [2]). The induced current and the corresponding so-called reduction factor of the line 
are determined by 
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Since a transmission line is usually transposed, the value of the reduction factor varies from tower to tower. 
These variations are limited between the values corresponding to the closest and the farthest position of phase 
conductor with respect to the ground wire(s). 
Since we are interested only in the potential differences between the points n and 0 (or n and N), the equivalent 
circuit represented in Fig. 3 can be reduced to the circuit presented in Fig. 4. 
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Fig. 4. All-conductive couplings on the ground-fault current return paths 
 
Looking from the fault point F we discern two uniform lumped-parameter ladder circuits with a finite number of 
elements. In general case, the voltage and the current at the input end (V0 and I0) and the voltage and the current 
at the output end (Vn and In) according to [2] are related by 
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The parameter k is the current distribution factor at any node, assuming that the number of the nodes is infinite. 
This parameter is determined by 
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The impedance Z∞ represents the input impedance of the uniform ladder circuit with an infinite number of nodes. 
This impedance is given by 
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However, in our case the problem is such that it cannot be solved by direct application of these equations. Before 
that, the real electrical circuit shown in the previous Figure should be modified. 
By using the superposition principle, the equivalent circuit shown in Fig. 3 can be substituted (with regards to 
the potentials appearing in the points 0, 1, 2, ... n) by the equivalent circuit presented in Fig. 5. 
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Fig. 5. Auxiliary equivalent circuit 
 
The impedance Znr represents the grounding impedance of the transmission line ground wire(s) seen from the 
point F towards the station B. Its value depends on the fault place. In practical conditions the influence of the 
impedance Zb on the value of the impedance Znr is so small that it can be neglected (Zb≈0). On the basis of this 
approximation and by using equations (4) we get 
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After the described modification, we have a circuit convenient for the application of the general equations of the 
uniform ladder circuit. 
According to the equivalent circuit in Fig. 5, the potential in the point 0 created only by the current source rIa is 
given by   
 
                                                        aaa IrZrIV −=)(0                                                             (8) 

 
On the basis of (8) and the equations (4), the potential at the point n created by the current sources rIa is given by 
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or, with certain approximations 
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By using an analogous procedure, the potential at the point n created by the current sources rIf  is given by 
 
                                               fnfn IrZrIV =)(    ,                                                                               (11) 

where the impedance Zn represents the grounding impedance of the transmission line ground wire at the fault 
place. Using equations (8) and assuming that Za≈0 and Zb≈0, this impedance is given by 
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When the potential Vn(rIf) is defined by using the general equations of uniform ladder circuit (4), the potential 
 V0(rIf) can be expressed as 
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By using the superposition principle, the real potentials at the points 0 and n are determined by 
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Finally, we can express the voltage drop on the ground-fault current return paths as 
 
                     )()()()( 00 fafnannr rIVrIVrIVrIVU −−+=                                    (16) 

In practical conditions the relations between the considered quantities are such (Za≈Zb<<Zn and Ia<If) that 
potentials Vn(rIa), V0(rIa) and V0(rIf) can be disregarded. Thus we can write 
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At the same time, it means that instead of the impedance of the all of the ground fault current return paths, it is 
sufficient to consider only impedance Zn (or Zn ≈Zf). 



When we have the expression (17), the apparent impedance for the ground fault current return paths according to 
Fig. 2 is given by 
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The coefficient γ represents a complex number with an imaginary part that can be disregarded in many practical 
situations. Its value along the line length varies in a very wide range of realistically possible values. On the basis 
of (19) it is interesting to note that the effects of the currents Ib and Ip (load current) depend on the direction of 
the current Ip (from A to B, or opposite) and accordingly may cancel or supplement each other. The current Ia 
represents the measured component of the fault current, but include the load current as well. 
Many of the quantitative analyses already performed show that the reduction factor r represents a complex 
number with a negligible imaginary part. Its value varies along the line in a very narrow range of values [2] and 
can be determined by pre-calculation, or by pre-measurement. When the line is untransposed, this factor has the 
same value along the whole line length, but different for each of the phase conductors because of their different 
space positions in relation to the ground wire. 
The variations of the effective value of the impedance Zf along the line length are considered in [3,4], while in 
the paper [5] a quantitative analysis of the real and the imaginary part of this impedance is performed.  
As a conclusion it can be said that the potential at the fault place Vf  (Fig. 1) depends on the factors r, γ and Zf. 
Their values depend on the fault place and cannot be determined if the fault place is an unknown quantity. 
 

 
ALGORITHM DERIVATION 

 
According to the circuit shown in Fig. 1, the measured voltage Ua is the sum of the voltage drop in the line to the 
fault point and the fault point potential Vf. By dividing the measured voltage Ua with the measured current Ia, 
according to (18), we obtain 
 
                                                                      ffa ZrZdZ γ+=                                                   (20) 

The notation used in the above equation has the following meaning 
: 
Za - Impedance determined on the basis of the measured quantities Ua and Ia (Za=Ua/Ia). 
df - relative distance to the faulted tower expressed in the relation to the total line length and 
Z - line impedance determined (in accordance to e.g. [3]) by the following expression: 
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The notation in (21) has the following meaning: 
Zd - positive-sequence impedance for the total line length 
Z0 - zero-sequence impedance for the total line length 
. 
The impedances Zd and Z0 represent the parameters of the line that can be obtained by measurement in the 
moment immediately before putting the line in operation. Thus it can be said that the impedance Z is an a priori 
known quantity. However, the value of the imaginary part of the impedance Z0 is often affected by the 
changeable soil resistivity along the line and it can be different for different sections of the same line. Because of 
that, in practical situations this impedance can be only approximately taken as a linear function of the line length. 
By separating the complex equation (20) into its real and imaginary part, we obtain the following two equations 
                                                                   { } { }ffa ZrRdZ γ+= ReRe                                  (22) 

                                                                    { } { }ffa ZrXdZ γ+= ImIm                                   (23) 

 
 By dividing (22) with the real part of the impedance Z(R) and (23) with the imaginary part of the same 
impedance (X) we obtain 
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 In this system of equations dr and di represent rough estimates of the fault distance obtained by using the 
known Za and Z and by ignoring the fault impedance (Zf=0). The estimates based on the real and on the 
imaginary part are mutually different (dr≠di) since according to the quantitative analysis [3,4] the real and the 
imaginary parts of the impedances Z and Zf in general case are not mutually proportional (R / X ≠ Rf  / Xf). 
 The only exception is the case of a fault at the end of the line, because only then the impedance Zf is negligible 
(Zf≈0). Also, because the ratio between Re{rγZf} and Im{rγZf} changes from tower to tower, it is realistic to 
assume that the proportion R/X= Re{rγZf}/Im{rγZf} in a general case does not exist. 
 The product of the quantities r, γ and Zf is unknown and each of these quantities seen separately is unknown. 
However, the real and the imaginary part of this product are mutually connected by 
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where  
                                                                             zrf ϕ+ϕ+ϕ=ϕ γ                                      (27) 

ϕr - phase angle of the line reduction factor r, 
ϕγ - phase angle of the coefficient γ, separately considered in [6] 
ϕz - phase angle of the impedance Zf, separately considered in [6] (may be obtained by measurement). 
 
The relations (24), (25) and (26) form a closed system of equations that enables the estimation of the desired 
distance df. It is determined by the following expression 
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The effects of numerous line and system parameters considered in Part 3., including the arc resistance [5], are 
expressed only through di, dr and ϕf. 
Regarding the identification of this fault type it is important to mention the following. When a ground fault 
occurs the transmission line zero-sequence voltage and current can be picked up at the monitoring point. They 
will not appear in the power system when a non-ground fault (phase-to-phase or three-phase) occurs. Therefore a 
fault is regarded as non-ground if the signal of zero-sequence voltage does not appear at the monitoring point 
when a fault occurs. Expressed in another way: if the condition dr≠di is satisfied for one phase conductor, we 
have a single phase-to-ground fault on the line. If this condition is simultaneously satisfied for two phase 
conductors, we have a double phase-to-ground fault on the line. 
 
 
Quantitative analysis performed in [5] shows  that the value of ϕγ varies in very narrow limits along the line that 
satisfies the condition |Ia|>|Ib|. This is why the following question arise: are there in practice the lines for which 
we a priori know that the condition |Ia|>| Ib| is satisfied always and on the whole length? Lines satisfying this 
condition exist in power systems and these are the so-called radial lines, serving as a connection between the 
transmission and the distribution networks, as well as feeding lines in high voltage distribution networks. 
According to that for this type of lines the angle ϕγ can be disregarded so that instead of (27) we can use the 
following approximation 
 
                                                                              ϕf  ≈ ϕr+ ϕz                                                (29) 

 
Based on the quantitative analysis given in [5], it is obtained the conditions under which the angle ϕf  can be 
treated as an a priori known quantity (19). These conditions simultaneously represent conditions  for which the 
application of the developed algorithm gives high accuracy. The favorable circumstance is that the high accuracy 
is especially desirable for the relays working in such conditions, or in high voltage distribution networks. The 
lines belonging to these networks are relatively short and because of that the grounding impedance at fault place 
has relatively great effect on the fault place determining. As a consequence of this the distance relay see the fault 



as it if taken place in another zone or even out of line. For overcoming this problem of current engineering 
practice it is necessary to provide long – distance data transfer. In comparing with this solution the algorithm 
developed in this paper represents one more economical, more reliable and more practical solution.  
 
 
 
5. CONCLUSIONS 
 
The paper presents a novel digital algorithm for distance relay including grounding impedance at fault place. The 
accuracy of this algorithm is high especially for the relays working in high voltage distribution networks. This 
quality enables us to eliminate the coordination problem appearing in operation these relays without long-
distance data transfer. 
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